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Abstract. We have shown by exact enumeration on a square lattice that spiral lattice site 
animals and spiral lattice site trees belong to different universality classes, i.e. loops have 
a non-trivial effect on spiral lattice animal statistics. This result is contrary to what is 
known in the cases of undirected and directed lattice animals. Some special features of 
spiral lattice animals have been pointed out in this context. 

Lattice animals, defined as clusters of connected sites or bonds embedded in a regular 
lattice, are lattice models of branched polymers in dilute solution and also describe 
the statistics of large clusters below the percolation threshold (Lubensky and Isaacson 
1979, Stauffer 1979, 1981). Two types of lattice animals that have been extensively 
studied are the undirected and directed lattice animals (Stauffer 1979, 1981, Dhar 
1986). Undirected lattice animals can be constructed without any constraint on the 
cluster connectivity whereas in the case of directed lattice animals sites or bonds can 
be occupied only in certain specific lattice directions. Recently, a new type of lattice 
animals, known as spiral lattice animals, have been defined (Li and Zhou 1985, Bose 
and Ray 1987, Bose et a1 1988) which belong to a new universality class, different 
from those of undirected and directed lattice animals. In a spiral animal the constraint 
is such that each site of the cluster is attached to the origin through at least one spiral 
path. In the spiral path, connection is either in the forward direction or in a specific 
rotational direction, say, clockwise. An interesting aspect of lattice animal studies has 
been finding the effect, if any, of loops on the animal statistics. Work carried out so 
far (Lubensky and Isaacson 1979, Family 1980, Daoud and Joanny 1981, Gaunt et a1 
1982, Duarte 1985) indicates that for both undirected and directed lattice animals the 
number of loops is a non-critical quantity, i.e. animals with loops and animals without 
loops (trees) belong to the same universality class. In this letter, we study the effect 
of loops on the statistics of spiral lattice animals. The study is based on exact 
enumeration of spiral lattice site animals and trees on a square lattice for size S up 
to 12 (animals) and 13 (trees) sites. 

In describing the effect of loops on spiral lattice animal statistics, we will concentrate 
on the following two asymptotic relations. The first relation states that in the asymptotic 
S -$. CC limit, the total number of animals gs goes as 
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where A is a constant for a particular lattice and is known as the ‘growth parameter’ 
because asymptotically gs/gs- ,  + A. The animal number exponent 6 is universal and 
changes only if lattice dimension d changes. The second relation shows how the 
average radius of gyration Rs scales with size S: 

where v is the radius of gyration exponent. Rs is defined as 

where ri is the distance of a cluster site i from the centre of mass of the cluster and 
(. . .) denotes the average over all animals. In order to calculate the exponents 8, v 
and the parameter A for both spiral animals and spiral trees exact enumeration of 
animals and trees has been performed. The computer algorithm used generates undirec- 
ted animals and then checks each animal for spiral connection. Besides trees (no-loop 
animals) one-loop animals have also been separately counted. All these enumeration 
data, along with the exact data for radii of gyration, are listed in table 1. The number 
of loops L in an animal has been determined through the following relations: 

4 

b=f i n ( i )  L = b - S + I  
, = I  

(4) 

where b is the number of bonds in the animal and n ( i )  is the number of sites in the 
animal which have i nearest-neighbour occupied sites. Figure 1 shows the variation 
of the ratio g s / g s - ,  with 1/S for both animals and trees ( L  = 0). Extrapolation of the 
last few points to S + 00 can be performed employing a standard numerical procedure 
(Gaunt and Guttmann 1974). The intercept on the y axis gives A and the exponent 8 
is determined from the slope. For the radius of gyration data, we used a sequential 
fit to the form 

log Rs= v l o g ( S + 6 ) + B + C / ( S + 6 ) ’  

Table 1. Exact data on square lattice spiral animals, trees and one-loop animals 

Animals Trees One-loop animals 
- 

S gs R* g.5 Rs gs R S  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
2 
6 

17 
49 

140 
396 

1114 
3 134 
8 824 

24 924 
70 618 

0.00 
0.50 
0.716 66 
0.9 10 29 
1.078 04 
1.231 843 
1.374 336 
1.506 745 
1.629 17 1 
1.744 838 
1.852 868 
1.954 93 1 
- 

1 0.00 
2 0.50 
6 0.716 66 

16 0.923 
41 1.113 878 

104 1.291 321 
262 1.454 111 
648 1.608 09 

1 5 7 1  1.756 12 
3 790 1.898 981 
9 014 2.037 25 

21 242 2.171 439 
49 676 2.301 906 

0 0.00 
0 0.00 
0 0.00 
1 0.707 
8 0.894 3 1  

34 1.066 03 
112 1.242 45 
344 1.412 91 

1032 1.568 15 
2 986 1.712 813 
8 384 1.850 16 

23011 1.983 384 
61 924 2.111 801 
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Figure 1. Plot of the ratios g,/g,_, against 1/S for spiral animals (A)  and trees (T) on a 
square lattice. 

the parameter S being chosen in the range of values which gives a satisfactory 
convergence of the successive estimates of v. The values of A, 8, v are 

A = 2.992 f 0.01 e = 0.365 * 0.05 v = 0.505 * 0.02 

for animals and 

A 0  = 2.124 * 0.003 eo= -i.315*0.02 ~0 = 0.66 * 0.02 

for trees. It is clear from the above results that spiral lattice animals and spiral lattice 
trees belong to different universality classes, i.e. unlike in the cases of undirected and 
directed lattice animals, the number of loops is a critical quantity and loops have a 
non-trivial effect on spiral lattice animal statistics. For both undirected and directed 
lattice animals, a number of studies (Whittington et a1 1983, Duarte 1985, Lam 1987) 
have established that the growth parameter A L  and the radius of gyration exponent vL 
for animals with L loops are equal to A. and yo, the growth parameter and radius of 
gyration exponent respectively for trees. Also, the animal number exponent O r  = Bo - L. 
For spiral one-loop animals, A l  = 2.05 f 0.1, el = -4.072 398 94 * 1 and v1 = 0.67 * 0.04. 
Within the limits of error it appears that A l  = A o ,  v ,  = vo but # Bo- 1. A longer series 
of enumeration data than that for animal size S = 13 is required for both trees and 
L-loop animals in order to find the relation, if any, between the exponents O L  and Bo. 

We have seen that loops have a non-trivial effect on asymptotic cluster properties 
of spiral lattice animals. Two features of the spiral animal structure should be noted 
in this context. Figure 2 shows a spiral lattice site animal containing three loops. The 
origin is denoted by a cross and the path traced out by arrows indicates cluster 
connectivity. The path goes either straight or turns clockwise. As soon as the path 
deviates from a certain direction it has to trace out a loop in order to continue growing 
in the original direction. To grow in all directions, the spiral animal has to contain a 
large number of loops. This is not true in the case of undirected and directed lattice 
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Figure 2. A spiral lattice site animal on a square lattice grown from the origin X. The 
animal contains three loops. 

animals. The second feature has to do with the fact that not all trees, obtained from 
spiral lattice animals by eliminating appropriate occupied sites or bonds, are spirally 
connected. In figure 2, if the circled sites are not occupied sites, the lattice animal is 
a tree. This tree, however, is no longer spirally connected. In the case of directed 
lattice animals a similar procedure gives rise to trees which always obey the directional 
constraint. 

To the authors’ knowledge, spiral lattice animals are the only type of lattice animals 
known at present for which the number of loops is a critical quantity in the asymptotic 
limit. We have given numerical evidence to establish this fact. Further studies, 
including a possible field theoretic formulation of the problem, should be attempted 
to have a clear understanding of the effect of a spiralling constraint on the statistics 
of lattice animals. 
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